Techniques of knowledge representation
| Institution | Jomo Kenyatta University of Science and Technology |
| Course | Information Technol... |
| Year | 3rd Year |
| Semester | Unknown |
| Posted By | Jeff Odhiambo |
| File Type | |
| Pages | 7 Pages |
| File Size | 1.11 MB |
| Views | 1549 |
| Downloads | 0 |
| Price: |
Buy Now
|
Description
Techniques of knowledge representation in Artificial Intelligence (AI) define how information is structured and processed for reasoning and decision-making. The main techniques include logical representation, which uses formal logic to express facts and rules; semantic networks, which represent knowledge as interconnected nodes and relationships; frames, which organize knowledge into structured templates with attributes and values; and production rules, which use "if-then" statements for decision-making. Ontologies provide a hierarchical structure of concepts and their relationships, enabling AI to understand context. These techniques help AI systems efficiently store, retrieve, and apply knowledge, making them crucial for expert systems, natural language processing, and intelligent decision-making.
Below is the document preview.
BIT 2319: Artificial Intelligence
Institution: Jomo Kenyatta University of Science and Technology
Year: 2022/2023
Semester: 3rd Year, 1st Semester (3.1)
BIT 2319: Artificial Intelligence
Institution: Jomo Kenyatta University of Science and Technology
Year: 2021/2022
Semester: 3rd Year, 1st Semester (3.1)
BIT 2319: Artificial Intelligence
Institution: Jomo Kenyatta University of Science and Technology
Year: 2021/2022
Semester: 3rd Year, 1st Semester (3.1)
BIT 2319: Artificial Intelligence
Institution: Jomo Kenyatta University of Science and Technology
Year: 2021/2022
Semester: 3rd Year, 1st Semester (3.1)
BIT 2319: Artificial Intelligence
Institution: Jomo Kenyatta University of Science and Technology
Year: 2021/2022
Semester: 3rd Year, 1st Semester (3.1)
BIT 2319: Artificial Intelligence
Institution: Jomo Kenyatta University of Science and Technology
Year: 2022/2023
Semester: 3rd Year, 1st Semester (3.1)
BIT 2319: Artificial Intelligence
Institution: Jomo Kenyatta University of Science and Technology
Year: 2022/2023
Semester: 3rd Year, 1st Semester (3.1)
BIT 2319: Artificial Intelligence
Institution: Jomo Kenyatta University of Science and Technology
Year: 2022/2023
Semester: 3rd Year, 1st Semester (3.1)
Review of Data Structures
A review of data structures involves examining various ways to organize, store, and manage data efficiently for different computational tasks. It covers fundamental structures like arrays, linked lists, stacks, and queues, as well as more complex ones like trees, graphs, and hash tables. Each data structure has unique characteristics, advantages, and use cases, influencing factors such as time complexity, memory usage, and ease of implementation. The review typically includes analyzing operations like insertion, deletion, searching, and sorting, as well as their efficiency in different scenarios. Understanding data structures is crucial for optimizing algorithms and improving software performance.
76 Pages
1384 Views
0 Downloads
2.02 MB
Introduction to Artificial Intelligence
Introduction to Artificial Intelligence (AI) explores the development of computer systems that can perform tasks requiring human-like intelligence, such as problem-solving, learning, reasoning, and decision-making. AI encompasses various subfields, including machine learning, natural language processing, computer vision, and robotics. It relies on algorithms and models that enable computers to analyze data, recognize patterns, and make predictions or decisions with minimal human intervention. AI is widely used in industries such as healthcare, finance, and automation, transforming how technology interacts with the world. Understanding AI principles is essential for leveraging its potential and addressing ethical and societal challenges.
174 Views
0 Downloads
3.61 MB